Fully Parallel Algorithm for Simulating Nonlinear Schrödinger Equation

Pavel Lushnikov

Theoretical Division, Los Alamos
National Laboratory

Nonlinear Schrödinger equation in optical fiber communications:

$$iA_z - \frac{1}{2}\beta_2(z)A_{tt} - \frac{i}{6}\beta_3(z)A_{ttt} + \sigma(z)|A|^2A$$

$$= i(-\gamma + [\exp(z_a\gamma) - 1]\Sigma_{k=1}^N \delta(z - z_k))A$$

$$\equiv iG(z)A$$

Amplitude of light: $A e^{i(k_0z-\omega_0t)}$

 eta_2 and eta_3 - first and second-order group velocity dispersion $\sigma(z)$ - nonlinear coefficient (Kerr nonlinearity) $z_k = k z_a \ (k = 1, \dots, N)$ - amplifiers locations

Change of variables: $u = Ae^{-\int_0^z G(z')dz'}$

$$iu_z - \frac{1}{2}\beta_2(z)u_{tt} - \frac{i}{6}\beta_3(z)u_{ttt} + c(z)|u|^2u = 0$$

$$c(z) \equiv \sigma(z) \exp{(2 \int_0^z G(z') dz')}$$
 - periodical function of z

c(z) - depends on fiber nonlinearity, linear losses and amplifiers locations

Generalized nonlinear Schrödinger equation:

$$iu_z + \hat{\mathcal{L}}(z)u + \hat{\mathcal{N}}(|u|^2, z)u = 0$$

Example of generalized nonlinear Schrödinger equation:

$$iu_z - \frac{1}{2}\beta_2(z)u_{tt} - \frac{i}{6}\beta_3(z)u_{ttt} + c(z)|u|^2 u = 0$$

$$\hat{\mathcal{L}}(z)u \qquad \qquad \hat{\mathcal{N}}(|u|^2, z)u = 0$$

Optical fiber communications

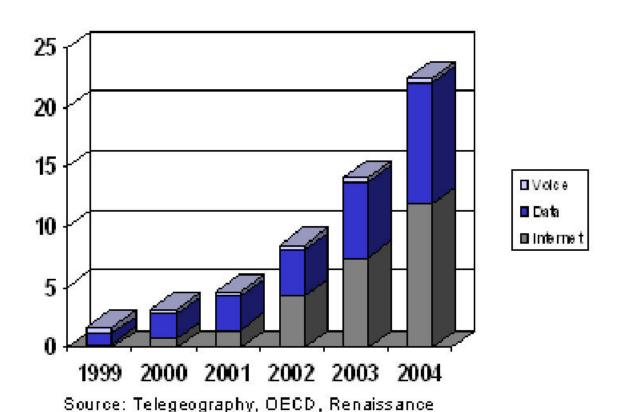
$$iu_z - \frac{1}{2}\beta_2(z)u_{tt} - \frac{i}{6}\beta_3(z)u_{ttt} + c(z)|u|^2u = 0$$

Amplitude of light: $ue^{i(k_0z-\omega_0t)}$

 β_2 and β_3 - first and second-order group velocity dispersion

c(z) - depends on fiber nonlinearity, linear losses and amplifiers locations

Forecasted Bandwidth Demand – 1999-2004 (Terabits per second)



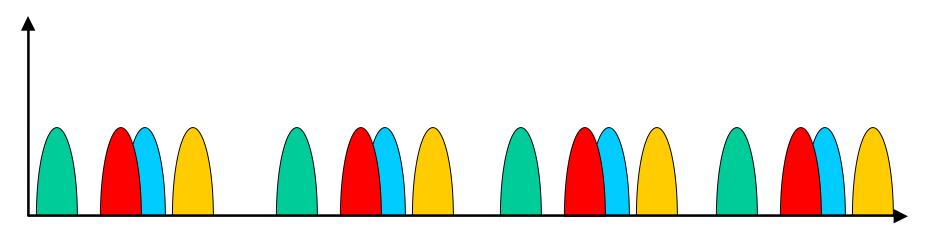
Analysis 1999, RedHerring 2000

Potential solutions to increase bit-rate:

- -Increase bit-rate in one frequency channel
- -Increase number of frequency channels

Wavelength-division-multiplexed optical fiber system

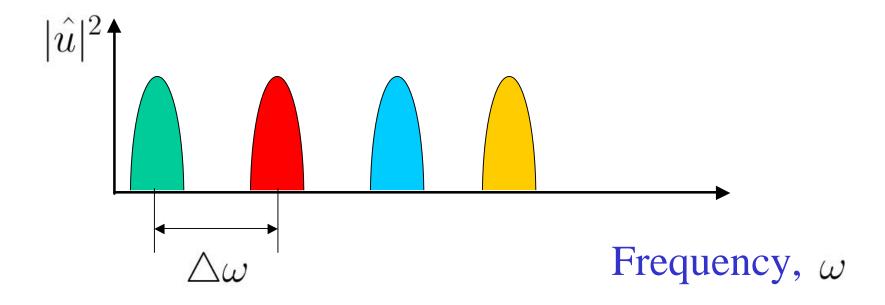
Power



Time, t

Fourier domain

Fourier transform: $\hat{u}(\omega, z) = \int_{-\infty}^{\infty} u(t, z)e^{i\omega t}dt$.



$$\Delta\omega/\omega_0\ll 1$$

Split-step numerical method:

$$u_z = \hat{A}u + \hat{B}u$$

$$u_z = e^{(\hat{A} + \hat{B})z} u(0)$$

$$\simeq e^{\hat{A}z} e^{\hat{B}z} u(0)$$

\hat{A} and \hat{B} do not commute:

$$e^{(\hat{A}+\hat{B})z} = e^{\hat{A}z}e^{\hat{B}z} + O(z^2)$$

$$e^{(\hat{A}+\hat{B})z} = e^{\hat{A}z/2}e^{\hat{B}z}e^{\hat{A}z/2} + O(z^3)$$

Generalized nonlinear Schrödinger equation:

$$iu_z - \frac{1}{2}\beta_2(z)u_{tt} - \frac{i}{6}\beta_3(z)u_{ttt} + c(z)|u|^2u = 0$$

$$iu_z + \hat{\mathcal{L}}(z)u + \hat{\mathcal{N}}(|u|^2, z)u = 0$$

Split-step:

$$u(z) = e^{i \int_0^z \hat{\mathcal{N}}(|u|^2, z') dz'} e^{i \int_0^z \hat{\mathcal{L}}(z') dz'} u(0) + O(z^2)$$

 $\hat{\mathcal{L}}$ is a multiplication operator in Fourier domain:

$$\hat{\mathcal{L}}\hat{u}(\omega,z) = \left[\beta_2(z)\frac{\omega^2}{2} + \beta_3(z)\frac{\omega^3}{6}\right]\hat{u}(\omega,z),$$

where
$$\hat{u}(\omega, z) = \int_{-\infty}^{\infty} u(t, z) e^{i\omega t} dt$$
.

 $\hat{\mathcal{N}}$ is a multiplication operator in t domain:

$$\hat{\mathcal{N}}u(t,z) = c(z)|u|^2u(t,z).$$

Estimates of required computation time

Difference in group velocities requires minimal computational window of 1000 bits = $10^5 ps$

How many FFT modes: $2\pi \triangle \omega_{max} 10^5 ps \sim 2 \ 10^5$

$$2\pi\Delta\omega_{max}10^5 ps \sim 2 \ 10^5$$

$$\triangle \omega_{max} = n \triangle \omega,$$

 $\triangle \omega_{max} = n \triangle \omega$, n - number of channels

How many steps in z:

$$\Delta z \le \frac{2\pi}{\beta_2 \Delta \omega_{max}^2} \sim 3m$$

$$10^4 km/3m \sim 3 \ 10^6$$

Computation time with split-step: 3 years

Numerical solution of NLS: two steps

$$iu_z - \frac{1}{2}\beta_2(z)u_{tt} - \frac{i}{6}\beta_3(z)u_{ttt} + c(z)|u|^2u = 0$$

- 1. Change of variables weak nonlinearity approximation
- 2. Effective numerical algorithm for parallel computation

Nonlinear Schrödinger Eq. in Fourier domain:

$$i\hat{u}_z + \hat{\mathcal{L}}\hat{u} + \frac{c(z)}{(2\pi)^2} \int d\omega_1 d\omega_2 d\omega_3 \hat{u}(\omega_1) \hat{u}(\omega_2) \hat{u}^*(\omega_3)$$
$$\times \delta(\omega_1 + \omega_2 - \omega - \omega_3) = 0 ,$$

$$\hat{\mathcal{L}}\hat{u}(\omega,z) = \left[\beta_2(z)\frac{\omega^2}{2} + \beta_3(z)\frac{\omega^3}{6}\right]\hat{u}(\omega,z)$$

Change of variables:

$$\hat{u}(\omega, z) \equiv \hat{\psi}(\omega, z) \exp\left(\frac{i}{2} \int_0^z dz' \left[\omega^2 \beta_2(z') + \frac{\omega^3}{3} \beta_3(z')\right]\right).$$

Integral form of nonlinear Schrödinger Eq.

for new variable $\hat{\psi}$:

$$\hat{\psi}(\omega, z) = \hat{\psi}(\omega, z_0) + iR(\hat{\psi}[\omega, z], \omega, z, z_0),$$

where

$$R(\hat{\psi}[\omega,z],\omega,z,z_0) =$$

$$\frac{1}{(2\pi)^2} \int d\omega_1 d\omega_2 d\omega_3 \int_{z_0}^z dz' \ c(z') \, \hat{u}(\omega_1, z') \hat{u}(\omega_2, z') \hat{u}^*(\omega_3, z')$$

$$\times \exp\left(-\frac{i}{2}\int_{0}^{z'}dz''[\omega^{2}\beta_{2}(z'') + \frac{\omega^{3}}{3}\beta_{3}(z'')]\right)\delta(\omega_{1} + \omega_{2} - \omega - \omega_{3}),$$

and
$$\hat{u}(\omega, z) \equiv \hat{\psi}(\omega, z) \exp\left(\frac{i}{2} \int_0^z dz' [\omega^2 \beta_2(z') + \frac{\omega^3}{3} \beta_3(z')]\right).$$

Weak nonlinearity approximation

Nonlinear scale: $z_{nl} \gg z_{disp}$,

$$z_{nl} \equiv 1/|p|^2$$
 - characteristic nonlinear length,

$$z_{disp} \equiv \tau^2/|\beta_2|$$
 - characteristic dispersion length,

p and τ - typical pulse amplitude and width.

Weak nonlinearity: $\hat{\psi}(\omega,z)$ is a slow function on scale $L \ll z_{nl}$

Fast dependence of \hat{u} is already included in the term $\exp\left(\frac{i}{2}\int_0^z dz' [\omega^2\beta_2(z') + \frac{\omega^3}{3}\beta_3(z')]\right)$ - exact solution of linear part of nonlinear Schrödinger Eq.

First order approximation

$$\begin{split} \hat{\psi}(\omega,(m+1)L) &= \hat{\psi}(\omega,mL) + \\ &iR(\hat{\psi}[\omega,mL],\omega,(m+1)L,mL) + O(\frac{L}{z_{nl}})^2. \end{split}$$

 $\hat{\psi}[\omega, mL]$ replaces $\hat{\psi}[\omega, z]$ in the nonlinear term R in the interval $mL \leq z < (m+1)L$.

 $O(\frac{L}{z_{nl}})^2$ - accuracy of first order approximation

Second order approximation

$$\begin{split} \hat{\psi}(\omega,(m+1)L) &= \hat{\psi}(\omega,mL) \\ &+ iR(\hat{\psi}^{(1)}[\omega,z],\omega,z,mL) + O(\frac{L}{z_{nl}})^3 \end{split}$$

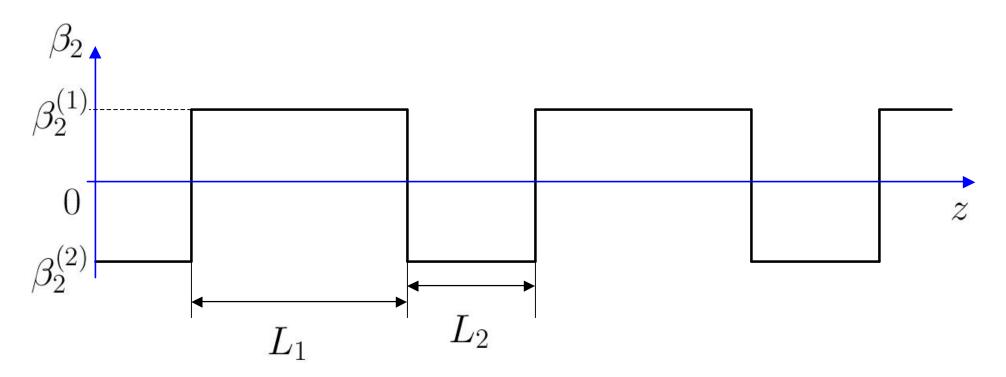
 $\hat{\psi}^{(1)}[\omega,z]$ replaces $\hat{\psi}[\omega,z]$ in the nonlinear term R in the interval $mL \leq z < (m+1)L$.

 $\hat{\psi}^{(1)}[\omega,z]$ - obtained from first order approximation:

$$\hat{\psi}^{(1)}(\omega,z) \equiv \hat{\psi}(\omega,mL) + iR(\hat{\psi}[\omega,mL],\omega,z,mL).$$

Particular case: path-averaged Gabitov-Turitsyn Eq.

Step-wise dispersion variation:



$$L = L_1 + L_2$$
 - period, $L_1 \beta_2^{(1)} + L_2 \beta_2^{(2)} = 0$

Nonlinear term:

$$R(\hat{\psi}[\omega, mL], \omega, (m+1)L, mL) = \frac{L}{(2\pi)^2} \int \frac{\sin\frac{s\Delta}{2}}{\frac{s\Delta}{2}} \hat{\psi}(\omega_1, mL) \hat{\psi}(\omega_2, mL) \times \hat{\psi}^*(\omega_3, mL) \delta(\omega_1 + \omega_2 - \omega_3 - \omega) d\omega_1 d\omega_2 d\omega_3,$$

$$\triangle \equiv \omega_1^2 + \omega_2^2 - \omega_3^2 - \omega^2$$

 $s = L_1 \beta_2^{(1)}$ - dispersion map strength

$$\hat{\psi}(\omega, (m+1)L) - \hat{\psi}(\omega, mL) \simeq L\hat{\psi}_z(\omega, mz)|_{z=mL}$$

Gabitov-Turitsyn Eq.:

$$i\hat{\psi}_z(\omega, z) + \frac{1}{(2\pi)^2} \int \frac{\sin\frac{s\triangle}{2}}{\frac{s\triangle}{2}} \hat{\psi}(\omega_1, z) \hat{\psi}(\omega_2, z) \hat{\psi}^*(\omega_3, z)$$
$$\times \delta(\omega_1 + \omega_2 - \omega_3 - \omega) d\omega_1 d\omega_2 d\omega_3 = 0$$

Soliton solution: $\hat{\psi}(\omega, z) = \hat{A}(\omega)e^{i\lambda z}$

 λ - soliton propagation constant

Main obstacle of numerical integration of integral equation is a calculation of nonlinear term

 $R(\hat{v}[\omega,z],\omega,z,mL)$ - generally requires $M\times N^3$ numerical operations.

N - number of grid points in ω space

M - number of grid points for integration over z

Efficient numerical algorithm for calculation of term $R(\hat{v}[\omega, z], \omega, z, mL)$

Inverse Fourier transform:

$$\hat{F}^{-1}(R(\hat{v}[\omega], \omega, z, mL)) = \int_{mL}^{z} dz' \, c(z') \mathbf{G}^{(z')}(V^{(z')}(t, z')),$$

$$V^{(z)}(t, z) \equiv |v^{(z)}(t, z)|^{2} v^{(z)}(t, z)$$

Operator $G^{(z)}$ is a multiplication operator in

$$ω$$
 space: $\hat{\mathbf{G}}^{(z)}(\hat{V}^{(z)}(\omega, z)) \equiv$

$$\exp\left(-\frac{i}{2}\int_0^z dz' [\omega^2 \beta_2(z') + \frac{\omega^3}{3}\beta_3(z')]\right) \hat{V}^{(z)}(\omega, z)$$

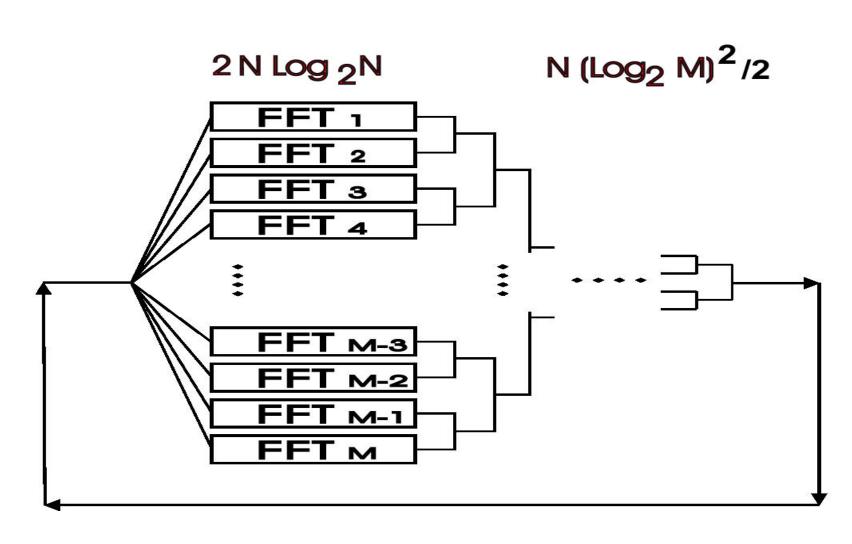
$$\hat{u}_0(z) = \hat{\psi}(\omega, mL) e^{i \int_{mL}^z \hat{\mathcal{L}}(z') dz}$$

$$z = mL \qquad mL + \frac{L}{M} \qquad mL + \frac{2L}{M} \qquad mL + \frac{3L}{M} \qquad (m+1)L$$

$$\hat{u}_0(mL) \quad \hat{u}_0(mL + \frac{L}{M}) \quad \hat{u}_0(mL + \frac{2L}{M}) \quad \hat{u}_0(mL + \frac{3L}{M}) \qquad \hat{u}_0(mL + L)$$

$$\hat{u}_0(\omega, z) \qquad \rightarrow \qquad u_0(t, z) \qquad \rightarrow \qquad V(t, z) = |u_0(t, z)|^2 u_0(t, z)$$

Forward and inverse Fourier transforms, corresponding to *M* points in *z* space, can be calculated simultaneously and independently in *M* CPU's using fast Fourier transform (FFT)



Number of numerical operations:

Split-step: $2MNLog_2(N)$

Parallel algorithm:

$$N[4Log_2(N) + \frac{Log_2(M)^2}{2}]$$

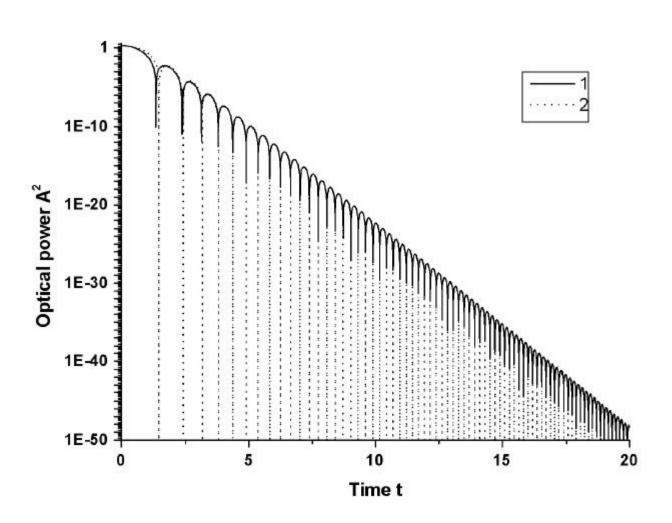
Gabitov-Turitsyn Eq.:

$$i\hat{\psi}_z(\omega, z) + \frac{1}{(2\pi)^2} \int \frac{\sin\frac{s\triangle}{2}}{\frac{s\triangle}{2}} \hat{\psi}(\omega_1, z) \hat{\psi}(\omega_2, z) \hat{\psi}^*(\omega_3, z)$$
$$\times \delta(\omega_1 + \omega_2 - \omega_3 - \omega) d\omega_1 d\omega_2 d\omega_3 = 0$$

Soliton solution: $\hat{\psi}(\omega, z) = \hat{A}(\omega)e^{i\lambda z}$

 λ - soliton propagation constant

Dispersion-managed soliton of Gabitov Turitsyn Eq. versus analytical asymptotic of soliton tails:



Conclusion

The proposed parallel numerical algorithm allows one to implement numerical simulations of NLS about M/2 times faster than split-step method.

Future work

Implementation of the proposed massive parallel algorithm on workstation clusters and application for full scale numerical simulations of optical fiber systems.